Metamath Proof Explorer


Theorem iccpartxr

Description: If there is a partition, then all intermediate points and bounds are extended real numbers. (Contributed by AV, 11-Jul-2020)

Ref Expression
Hypotheses iccpartgtprec.m φM
iccpartgtprec.p φPRePartM
iccpartxr.i φI0M
Assertion iccpartxr φPI*

Proof

Step Hyp Ref Expression
1 iccpartgtprec.m φM
2 iccpartgtprec.p φPRePartM
3 iccpartxr.i φI0M
4 iccpart MPRePartMP*0Mi0..^MPi<Pi+1
5 1 4 syl φPRePartMP*0Mi0..^MPi<Pi+1
6 2 5 mpbid φP*0Mi0..^MPi<Pi+1
7 6 simpld φP*0M
8 elmapi P*0MP:0M*
9 7 8 syl φP:0M*
10 9 3 ffvelcdmd φPI*