Metamath Proof Explorer


Theorem iccssico

Description: Condition for a closed interval to be a subset of a half-open interval. (Contributed by Mario Carneiro, 9-Sep-2015)

Ref Expression
Assertion iccssico A*B*ACD<BCDAB

Proof

Step Hyp Ref Expression
1 df-ico .=x*,y*z*|xzz<y
2 df-icc .=x*,y*z*|xzzy
3 xrletr A*C*w*ACCwAw
4 xrlelttr w*D*B*wDD<Bw<B
5 1 2 3 4 ixxss12 A*B*ACD<BCDAB