Metamath Proof Explorer


Theorem ichnfimlem

Description: Lemma for ichnfim : A substitution for a nonfree variable has no effect. (Contributed by Wolf Lammen, 6-Aug-2023) Avoid ax-13 . (Revised by Gino Giotto, 1-May-2024)

Ref Expression
Assertion ichnfimlem yxφaxbyφbyφ

Proof

Step Hyp Ref Expression
1 nfa1 yyxφ
2 sb6 byφyy=bφ
3 2 a1i yxφbyφyy=bφ
4 2 biimpri yy=bφbyφ
5 4 axc4i yy=bφybyφ
6 3 5 syl6bi yxφbyφybyφ
7 1 6 nf5d yxφybyφ
8 1 7 nfim1 yyxφbyφ
9 sbequ12 y=bφbyφ
10 9 imbi2d y=byxφφyxφbyφ
11 8 10 equsalv yy=byxφφyxφbyφ
12 11 bicomi yxφbyφyy=byxφφ
13 nfv xy=b
14 nfnf1 xxφ
15 14 nfal xyxφ
16 sp yxφxφ
17 15 16 nfim1 xyxφφ
18 13 17 nfim xy=byxφφ
19 18 nfal xyy=byxφφ
20 12 19 nfxfr xyxφbyφ
21 pm5.5 yxφyxφbyφbyφ
22 15 21 nfbidf yxφxyxφbyφxbyφ
23 20 22 mpbii yxφxbyφ
24 sbft xbyφaxbyφbyφ
25 23 24 syl yxφaxbyφbyφ