Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Real intervals
icossico2
Metamath Proof Explorer
Description: Condition for a closed-below, open-above interval to be a subset of a
closed-below, open-above interval. (Contributed by Glauco Siliprandi , 2-Jan-2022)
Ref
Expression
Hypotheses
icossico2.1
⊢ φ → B ∈ ℝ *
icossico2.2
⊢ φ → C ∈ ℝ *
icossico2.3
⊢ φ → B ≤ A
Assertion
icossico2
⊢ φ → A C ⊆ B C
Proof
Step
Hyp
Ref
Expression
1
icossico2.1
⊢ φ → B ∈ ℝ *
2
icossico2.2
⊢ φ → C ∈ ℝ *
3
icossico2.3
⊢ φ → B ≤ A
4
2
xrleidd
⊢ φ → C ≤ C
5
icossico
⊢ B ∈ ℝ * ∧ C ∈ ℝ * ∧ B ≤ A ∧ C ≤ C → A C ⊆ B C
6
1 2 3 4 5
syl22anc
⊢ φ → A C ⊆ B C