Metamath Proof Explorer


Theorem icossico2

Description: Condition for a closed-below, open-above interval to be a subset of a closed-below, open-above interval. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses icossico2.1 φB*
icossico2.2 φC*
icossico2.3 φBA
Assertion icossico2 φACBC

Proof

Step Hyp Ref Expression
1 icossico2.1 φB*
2 icossico2.2 φC*
3 icossico2.3 φBA
4 2 xrleidd φCC
5 icossico B*C*BACCACBC
6 1 2 3 4 5 syl22anc φACBC