Metamath Proof Explorer


Theorem ida2

Description: Morphism part of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses idafval.i I=IdaC
idafval.b B=BaseC
idafval.c φCCat
idafval.1 1˙=IdC
idaval.x φXB
Assertion ida2 φ2ndIX=1˙X

Proof

Step Hyp Ref Expression
1 idafval.i I=IdaC
2 idafval.b B=BaseC
3 idafval.c φCCat
4 idafval.1 1˙=IdC
5 idaval.x φXB
6 1 2 3 4 5 idaval φIX=XX1˙X
7 6 fveq2d φ2ndIX=2ndXX1˙X
8 fvex 1˙XV
9 ot3rdg 1˙XV2ndXX1˙X=1˙X
10 8 9 ax-mp 2ndXX1˙X=1˙X
11 7 10 eqtrdi φ2ndIX=1˙X