Metamath Proof Explorer


Theorem idaval

Description: Value of the identity arrow function. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses idafval.i I = Id a C
idafval.b B = Base C
idafval.c φ C Cat
idafval.1 1 ˙ = Id C
idaval.x φ X B
Assertion idaval φ I X = X X 1 ˙ X

Proof

Step Hyp Ref Expression
1 idafval.i I = Id a C
2 idafval.b B = Base C
3 idafval.c φ C Cat
4 idafval.1 1 ˙ = Id C
5 idaval.x φ X B
6 1 2 3 4 idafval φ I = x B x x 1 ˙ x
7 simpr φ x = X x = X
8 7 fveq2d φ x = X 1 ˙ x = 1 ˙ X
9 7 7 8 oteq123d φ x = X x x 1 ˙ x = X X 1 ˙ X
10 otex X X 1 ˙ X V
11 10 a1i φ X X 1 ˙ X V
12 6 9 5 11 fvmptd φ I X = X X 1 ˙ X