Database
BASIC CATEGORY THEORY
Arrows (disjointified hom-sets)
Identity and composition for arrows
idaval
Next ⟩
ida2
Metamath Proof Explorer
Ascii
Unicode
Theorem
idaval
Description:
Value of the identity arrow function.
(Contributed by
Mario Carneiro
, 11-Jan-2017)
Ref
Expression
Hypotheses
idafval.i
⊢
I
=
Id
a
⁡
C
idafval.b
⊢
B
=
Base
C
idafval.c
⊢
φ
→
C
∈
Cat
idafval.1
⊢
1
˙
=
Id
⁡
C
idaval.x
⊢
φ
→
X
∈
B
Assertion
idaval
⊢
φ
→
I
⁡
X
=
X
X
1
˙
⁡
X
Proof
Step
Hyp
Ref
Expression
1
idafval.i
⊢
I
=
Id
a
⁡
C
2
idafval.b
⊢
B
=
Base
C
3
idafval.c
⊢
φ
→
C
∈
Cat
4
idafval.1
⊢
1
˙
=
Id
⁡
C
5
idaval.x
⊢
φ
→
X
∈
B
6
1
2
3
4
idafval
⊢
φ
→
I
=
x
∈
B
⟼
x
x
1
˙
⁡
x
7
simpr
⊢
φ
∧
x
=
X
→
x
=
X
8
7
fveq2d
⊢
φ
∧
x
=
X
→
1
˙
⁡
x
=
1
˙
⁡
X
9
7
7
8
oteq123d
⊢
φ
∧
x
=
X
→
x
x
1
˙
⁡
x
=
X
X
1
˙
⁡
X
10
otex
⊢
X
X
1
˙
⁡
X
∈
V
11
10
a1i
⊢
φ
→
X
X
1
˙
⁡
X
∈
V
12
6
9
5
11
fvmptd
⊢
φ
→
I
⁡
X
=
X
X
1
˙
⁡
X