Metamath Proof Explorer


Theorem idaval

Description: Value of the identity arrow function. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses idafval.i I=IdaC
idafval.b B=BaseC
idafval.c φCCat
idafval.1 1˙=IdC
idaval.x φXB
Assertion idaval φIX=XX1˙X

Proof

Step Hyp Ref Expression
1 idafval.i I=IdaC
2 idafval.b B=BaseC
3 idafval.c φCCat
4 idafval.1 1˙=IdC
5 idaval.x φXB
6 1 2 3 4 idafval φI=xBxx1˙x
7 simpr φx=Xx=X
8 7 fveq2d φx=X1˙x=1˙X
9 7 7 8 oteq123d φx=Xxx1˙x=XX1˙X
10 otex XX1˙XV
11 10 a1i φXX1˙XV
12 6 9 5 11 fvmptd φIX=XX1˙X