Metamath Proof Explorer


Theorem idfu1st

Description: Value of the object part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses idfuval.i I=idfuncC
idfuval.b B=BaseC
idfuval.c φCCat
Assertion idfu1st φ1stI=IB

Proof

Step Hyp Ref Expression
1 idfuval.i I=idfuncC
2 idfuval.b B=BaseC
3 idfuval.c φCCat
4 eqid HomC=HomC
5 1 2 3 4 idfuval φI=IBzB×BIHomCz
6 5 fveq2d φ1stI=1stIBzB×BIHomCz
7 2 fvexi BV
8 resiexg BVIBV
9 7 8 ax-mp IBV
10 7 7 xpex B×BV
11 10 mptex zB×BIHomCzV
12 9 11 op1st 1stIBzB×BIHomCz=IB
13 6 12 eqtrdi φ1stI=IB