Metamath Proof Explorer


Theorem idghm

Description: The identity homomorphism on a group. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Hypothesis idghm.b B = Base G
Assertion idghm G Grp I B G GrpHom G

Proof

Step Hyp Ref Expression
1 idghm.b B = Base G
2 id G Grp G Grp
3 eqid + G = + G
4 1 3 grpcl G Grp a B b B a + G b B
5 4 3expb G Grp a B b B a + G b B
6 fvresi a + G b B I B a + G b = a + G b
7 5 6 syl G Grp a B b B I B a + G b = a + G b
8 fvresi a B I B a = a
9 fvresi b B I B b = b
10 8 9 oveqan12d a B b B I B a + G I B b = a + G b
11 10 adantl G Grp a B b B I B a + G I B b = a + G b
12 7 11 eqtr4d G Grp a B b B I B a + G b = I B a + G I B b
13 12 ralrimivva G Grp a B b B I B a + G b = I B a + G I B b
14 f1oi I B : B 1-1 onto B
15 f1of I B : B 1-1 onto B I B : B B
16 14 15 ax-mp I B : B B
17 13 16 jctil G Grp I B : B B a B b B I B a + G b = I B a + G I B b
18 1 1 3 3 isghm I B G GrpHom G G Grp G Grp I B : B B a B b B I B a + G b = I B a + G I B b
19 2 2 17 18 syl21anbrc G Grp I B G GrpHom G