Metamath Proof Explorer


Theorem idlcl

Description: An element of an ideal is an element of the ring. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses idlss.1 G=1stR
idlss.2 X=ranG
Assertion idlcl RRingOpsIIdlRAIAX

Proof

Step Hyp Ref Expression
1 idlss.1 G=1stR
2 idlss.2 X=ranG
3 1 2 idlss RRingOpsIIdlRIX
4 3 sselda RRingOpsIIdlRAIAX