Metamath Proof Explorer


Theorem idlsrgstr

Description: A constructed semiring of ideals is a structure. (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypothesis idlsrgstr.1 W=BasendxB+ndx+˙ndx·˙TopSetndxJndx˙
Assertion idlsrgstr WStruct110

Proof

Step Hyp Ref Expression
1 idlsrgstr.1 W=BasendxB+ndx+˙ndx·˙TopSetndxJndx˙
2 eqid BasendxB+ndx+˙ndx·˙=BasendxB+ndx+˙ndx·˙
3 2 rngstr BasendxB+ndx+˙ndx·˙Struct13
4 9nn 9
5 tsetndx TopSetndx=9
6 9lt10 9<10
7 10nn 10
8 plendx ndx=10
9 4 5 6 7 8 strle2 TopSetndxJndx˙Struct910
10 3lt9 3<9
11 3 9 10 strleun BasendxB+ndx+˙ndx·˙TopSetndxJndx˙Struct110
12 1 11 eqbrtri WStruct110