Metamath Proof Explorer


Theorem idlsrgstr

Description: A constructed semiring of ideals is a structure. (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypothesis idlsrgstr.1 W = Base ndx B + ndx + ˙ ndx · ˙ TopSet ndx J ndx ˙
Assertion idlsrgstr W Struct 1 10

Proof

Step Hyp Ref Expression
1 idlsrgstr.1 W = Base ndx B + ndx + ˙ ndx · ˙ TopSet ndx J ndx ˙
2 eqid Base ndx B + ndx + ˙ ndx · ˙ = Base ndx B + ndx + ˙ ndx · ˙
3 2 rngstr Base ndx B + ndx + ˙ ndx · ˙ Struct 1 3
4 9nn 9
5 tsetndx TopSet ndx = 9
6 9lt10 9 < 10
7 10nn 10
8 plendx ndx = 10
9 4 5 6 7 8 strle2 TopSet ndx J ndx ˙ Struct 9 10
10 3lt9 3 < 9
11 3 9 10 strleun Base ndx B + ndx + ˙ ndx · ˙ TopSet ndx J ndx ˙ Struct 1 10
12 1 11 eqbrtri W Struct 1 10