Description: Topology component of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | idlsrgtset.1 | No typesetting found for |- S = ( IDLsrg ` R ) with typecode |- | |
idlsrgtset.2 | |
||
idlsrgtset.3 | |
||
Assertion | idlsrgtset | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idlsrgtset.1 | Could not format S = ( IDLsrg ` R ) : No typesetting found for |- S = ( IDLsrg ` R ) with typecode |- | |
2 | idlsrgtset.2 | |
|
3 | idlsrgtset.3 | |
|
4 | 2 | fvexi | |
5 | 4 | mptex | |
6 | 5 | rnex | |
7 | eqid | |
|
8 | 7 | idlsrgstr | |
9 | tsetid | |
|
10 | snsspr1 | |
|
11 | ssun2 | |
|
12 | 10 11 | sstri | |
13 | 8 9 12 | strfv | |
14 | 6 13 | ax-mp | |
15 | eqid | |
|
16 | eqid | |
|
17 | eqid | |
|
18 | 2 15 16 17 | idlsrgval | Could not format ( R e. V -> ( IDLsrg ` R ) = ( { <. ( Base ` ndx ) , I >. , <. ( +g ` ndx ) , ( LSSum ` R ) >. , <. ( .r ` ndx ) , ( i e. I , j e. I |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } >. } ) ) : No typesetting found for |- ( R e. V -> ( IDLsrg ` R ) = ( { <. ( Base ` ndx ) , I >. , <. ( +g ` ndx ) , ( LSSum ` R ) >. , <. ( .r ` ndx ) , ( i e. I , j e. I |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } >. } ) ) with typecode |- |
19 | 1 18 | eqtrid | |
20 | 19 | fveq2d | |
21 | 14 20 | eqtr4id | |
22 | 3 21 | eqtrid | |