Metamath Proof Explorer


Theorem idlsrgtset

Description: Topology component of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypotheses idlsrgtset.1 No typesetting found for |- S = ( IDLsrg ` R ) with typecode |-
idlsrgtset.2 I=LIdealR
idlsrgtset.3 J=raniIjI|¬ij
Assertion idlsrgtset RVJ=TopSetS

Proof

Step Hyp Ref Expression
1 idlsrgtset.1 Could not format S = ( IDLsrg ` R ) : No typesetting found for |- S = ( IDLsrg ` R ) with typecode |-
2 idlsrgtset.2 I=LIdealR
3 idlsrgtset.3 J=raniIjI|¬ij
4 2 fvexi IV
5 4 mptex iIjI|¬ijV
6 5 rnex raniIjI|¬ijV
7 eqid BasendxI+ndxLSSumRndxiI,jIRSpanRiLSSummulGrpRjTopSetndxraniIjI|¬ijndxij|ijIij=BasendxI+ndxLSSumRndxiI,jIRSpanRiLSSummulGrpRjTopSetndxraniIjI|¬ijndxij|ijIij
8 7 idlsrgstr BasendxI+ndxLSSumRndxiI,jIRSpanRiLSSummulGrpRjTopSetndxraniIjI|¬ijndxij|ijIijStruct110
9 tsetid TopSet=SlotTopSetndx
10 snsspr1 TopSetndxraniIjI|¬ijTopSetndxraniIjI|¬ijndxij|ijIij
11 ssun2 TopSetndxraniIjI|¬ijndxij|ijIijBasendxI+ndxLSSumRndxiI,jIRSpanRiLSSummulGrpRjTopSetndxraniIjI|¬ijndxij|ijIij
12 10 11 sstri TopSetndxraniIjI|¬ijBasendxI+ndxLSSumRndxiI,jIRSpanRiLSSummulGrpRjTopSetndxraniIjI|¬ijndxij|ijIij
13 8 9 12 strfv raniIjI|¬ijVraniIjI|¬ij=TopSetBasendxI+ndxLSSumRndxiI,jIRSpanRiLSSummulGrpRjTopSetndxraniIjI|¬ijndxij|ijIij
14 6 13 ax-mp raniIjI|¬ij=TopSetBasendxI+ndxLSSumRndxiI,jIRSpanRiLSSummulGrpRjTopSetndxraniIjI|¬ijndxij|ijIij
15 eqid LSSumR=LSSumR
16 eqid mulGrpR=mulGrpR
17 eqid LSSummulGrpR=LSSummulGrpR
18 2 15 16 17 idlsrgval Could not format ( R e. V -> ( IDLsrg ` R ) = ( { <. ( Base ` ndx ) , I >. , <. ( +g ` ndx ) , ( LSSum ` R ) >. , <. ( .r ` ndx ) , ( i e. I , j e. I |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } >. } ) ) : No typesetting found for |- ( R e. V -> ( IDLsrg ` R ) = ( { <. ( Base ` ndx ) , I >. , <. ( +g ` ndx ) , ( LSSum ` R ) >. , <. ( .r ` ndx ) , ( i e. I , j e. I |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } >. } ) ) with typecode |-
19 1 18 eqtrid RVS=BasendxI+ndxLSSumRndxiI,jIRSpanRiLSSummulGrpRjTopSetndxraniIjI|¬ijndxij|ijIij
20 19 fveq2d RVTopSetS=TopSetBasendxI+ndxLSSumRndxiI,jIRSpanRiLSSummulGrpRjTopSetndxraniIjI|¬ijndxij|ijIij
21 14 20 eqtr4id RVraniIjI|¬ij=TopSetS
22 3 21 eqtrid RVJ=TopSetS