Description: Two ways to state that a relation is reflexive on a class. (Contributed by FL, 15-Jan-2012) (Proof shortened by Mario Carneiro, 3-Nov-2015) (Revised by NM, 30-Mar-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | idref | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | 1 | fmpt | |
3 | opex | |
|
4 | 3 1 | fnmpti | |
5 | df-f | |
|
6 | 4 5 | mpbiran | |
7 | 2 6 | bitri | |
8 | df-br | |
|
9 | 8 | ralbii | |
10 | mptresid | |
|
11 | vex | |
|
12 | 11 | fnasrn | |
13 | 10 12 | eqtri | |
14 | 13 | sseq1i | |
15 | 7 9 14 | 3bitr4ri | |