Metamath Proof Explorer


Theorem idref

Description: Two ways to state that a relation is reflexive on a class. (Contributed by FL, 15-Jan-2012) (Proof shortened by Mario Carneiro, 3-Nov-2015) (Revised by NM, 30-Mar-2016)

Ref Expression
Assertion idref IARxAxRx

Proof

Step Hyp Ref Expression
1 eqid xAxx=xAxx
2 1 fmpt xAxxRxAxx:AR
3 opex xxV
4 3 1 fnmpti xAxxFnA
5 df-f xAxx:ARxAxxFnAranxAxxR
6 4 5 mpbiran xAxx:ARranxAxxR
7 2 6 bitri xAxxRranxAxxR
8 df-br xRxxxR
9 8 ralbii xAxRxxAxxR
10 mptresid IA=xAx
11 vex xV
12 11 fnasrn xAx=ranxAxx
13 10 12 eqtri IA=ranxAxx
14 13 sseq1i IARranxAxxR
15 7 9 14 3bitr4ri IARxAxRx