Metamath Proof Explorer


Theorem ifclda

Description: Conditional closure. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses ifclda.1 φψAC
ifclda.2 φ¬ψBC
Assertion ifclda φifψABC

Proof

Step Hyp Ref Expression
1 ifclda.1 φψAC
2 ifclda.2 φ¬ψBC
3 iftrue ψifψAB=A
4 3 adantl φψifψAB=A
5 4 1 eqeltrd φψifψABC
6 iffalse ¬ψifψAB=B
7 6 adantl φ¬ψifψAB=B
8 7 2 eqeltrd φ¬ψifψABC
9 5 8 pm2.61dan φifψABC