Metamath Proof Explorer


Theorem ifclda

Description: Conditional closure. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses ifclda.1 φ ψ A C
ifclda.2 φ ¬ ψ B C
Assertion ifclda φ if ψ A B C

Proof

Step Hyp Ref Expression
1 ifclda.1 φ ψ A C
2 ifclda.2 φ ¬ ψ B C
3 iftrue ψ if ψ A B = A
4 3 adantl φ ψ if ψ A B = A
5 4 1 eqeltrd φ ψ if ψ A B C
6 iffalse ¬ ψ if ψ A B = B
7 6 adantl φ ¬ ψ if ψ A B = B
8 7 2 eqeltrd φ ¬ ψ if ψ A B C
9 5 8 pm2.61dan φ if ψ A B C