Metamath Proof Explorer


Theorem ifeq12da

Description: Equivalence deduction for conditional operators. (Contributed by Wolf Lammen, 24-Jun-2021)

Ref Expression
Hypotheses ifeq12da.1 φψA=C
ifeq12da.2 φ¬ψB=D
Assertion ifeq12da φifψAB=ifψCD

Proof

Step Hyp Ref Expression
1 ifeq12da.1 φψA=C
2 ifeq12da.2 φ¬ψB=D
3 1 ifeq1da φifψAB=ifψCB
4 iftrue ψifψCB=C
5 iftrue ψifψCD=C
6 4 5 eqtr4d ψifψCB=ifψCD
7 3 6 sylan9eq φψifψAB=ifψCD
8 2 ifeq2da φifψAB=ifψAD
9 iffalse ¬ψifψAD=D
10 iffalse ¬ψifψCD=D
11 9 10 eqtr4d ¬ψifψAD=ifψCD
12 8 11 sylan9eq φ¬ψifψAB=ifψCD
13 7 12 pm2.61dan φifψAB=ifψCD