Database  
				SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)  
				Mathbox for Thierry Arnoux  
				General Set Theory  
				Conditional operator - misc additions  
				ifeq3da  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   Given an expression C  containing if ( ps , E , F )  , substitute
       (hypotheses .1 and .2) and evaluate (hypotheses .3 and .4) it for both
       cases at the same time.  (Contributed by Thierry Arnoux , 13-Dec-2021) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
					
						 
						Hypotheses 
						ifeq3da.1  
						   ⊢    if   ψ   E  F   =  E    →   C  =  G         
					 
					
						 
						 
						ifeq3da.2  
						   ⊢    if   ψ   E  F   =  F    →   C  =  H         
					 
					
						 
						 
						ifeq3da.3  
						   ⊢   φ   →   G  =  A         
					 
					
						 
						 
						ifeq3da.4  
						   ⊢   φ   →   H  =  B         
					 
				
					 
					Assertion 
					ifeq3da  
					   ⊢   φ   →    if   ψ   A  B   =  C         
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							ifeq3da.1  
							    ⊢    if   ψ   E  F   =  E    →   C  =  G         
						 
						
							2  
							
								
							 
							ifeq3da.2  
							    ⊢    if   ψ   E  F   =  F    →   C  =  H         
						 
						
							3  
							
								
							 
							ifeq3da.3  
							    ⊢   φ   →   G  =  A         
						 
						
							4  
							
								
							 
							ifeq3da.4  
							    ⊢   φ   →   H  =  B         
						 
						
							5  
							
								
							 
							iftrue  
							    ⊢   ψ   →    if   ψ   E  F   =  E         
						 
						
							6  
							
								5  1 
							 
							syl  
							    ⊢   ψ   →   C  =  G         
						 
						
							7  
							
								6 
							 
							adantl  
							    ⊢    φ   ∧   ψ      →   C  =  G         
						 
						
							8  
							
								3 
							 
							adantr  
							    ⊢    φ   ∧   ψ      →   G  =  A         
						 
						
							9  
							
								7  8 
							 
							eqtr2d  
							    ⊢    φ   ∧   ψ      →   A  =  C         
						 
						
							10  
							
								
							 
							iffalse  
							    ⊢   ¬   ψ     →    if   ψ   E  F   =  F         
						 
						
							11  
							
								10  2 
							 
							syl  
							    ⊢   ¬   ψ     →   C  =  H         
						 
						
							12  
							
								11 
							 
							adantl  
							    ⊢    φ   ∧   ¬   ψ        →   C  =  H         
						 
						
							13  
							
								4 
							 
							adantr  
							    ⊢    φ   ∧   ¬   ψ        →   H  =  B         
						 
						
							14  
							
								12  13 
							 
							eqtr2d  
							    ⊢    φ   ∧   ¬   ψ        →   B  =  C         
						 
						
							15  
							
								9  14 
							 
							ifeqda  
							    ⊢   φ   →    if   ψ   A  B   =  C