Metamath Proof Explorer


Theorem ifnetrue

Description: Deduce truth from a conditional operator value. (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Assertion ifnetrue ABifφAB=Aφ

Proof

Step Hyp Ref Expression
1 iffalse ¬φifφAB=B
2 1 adantl ABifφAB=A¬φifφAB=B
3 simplr ABifφAB=A¬φifφAB=A
4 simpll ABifφAB=A¬φAB
5 3 4 eqnetrd ABifφAB=A¬φifφABB
6 5 neneqd ABifφAB=A¬φ¬ifφAB=B
7 2 6 condan ABifφAB=Aφ