Step |
Hyp |
Ref |
Expression |
1 |
|
iffalse |
|- ( -. ph -> if ( ph , A , B ) = B ) |
2 |
1
|
adantl |
|- ( ( ( A =/= B /\ if ( ph , A , B ) = A ) /\ -. ph ) -> if ( ph , A , B ) = B ) |
3 |
|
simplr |
|- ( ( ( A =/= B /\ if ( ph , A , B ) = A ) /\ -. ph ) -> if ( ph , A , B ) = A ) |
4 |
|
simpll |
|- ( ( ( A =/= B /\ if ( ph , A , B ) = A ) /\ -. ph ) -> A =/= B ) |
5 |
3 4
|
eqnetrd |
|- ( ( ( A =/= B /\ if ( ph , A , B ) = A ) /\ -. ph ) -> if ( ph , A , B ) =/= B ) |
6 |
5
|
neneqd |
|- ( ( ( A =/= B /\ if ( ph , A , B ) = A ) /\ -. ph ) -> -. if ( ph , A , B ) = B ) |
7 |
2 6
|
condan |
|- ( ( A =/= B /\ if ( ph , A , B ) = A ) -> ph ) |