Metamath Proof Explorer


Theorem ifeqda

Description: Separation of the values of the conditional operator. (Contributed by Alexander van der Vekens, 13-Apr-2018)

Ref Expression
Hypotheses ifeqda.1 φψA=C
ifeqda.2 φ¬ψB=C
Assertion ifeqda φifψAB=C

Proof

Step Hyp Ref Expression
1 ifeqda.1 φψA=C
2 ifeqda.2 φ¬ψB=C
3 iftrue ψifψAB=A
4 3 adantl φψifψAB=A
5 4 1 eqtrd φψifψAB=C
6 iffalse ¬ψifψAB=B
7 6 adantl φ¬ψifψAB=B
8 7 2 eqtrd φ¬ψifψAB=C
9 5 8 pm2.61dan φifψAB=C