Metamath Proof Explorer


Theorem ifmpt2v

Description: Move a conditional inside and outside a function in maps-to notation. (Contributed by SN, 16-Oct-2025)

Ref Expression
Assertion ifmpt2v x A if φ B C = if φ x A B x A C

Proof

Step Hyp Ref Expression
1 iftrue φ if φ B C = B
2 1 mpteq2dv φ x A if φ B C = x A B
3 iftrue φ if φ x A B x A C = x A B
4 2 3 eqtr4d φ x A if φ B C = if φ x A B x A C
5 iffalse ¬ φ if φ B C = C
6 5 mpteq2dv ¬ φ x A if φ B C = x A C
7 iffalse ¬ φ if φ x A B x A C = x A C
8 6 7 eqtr4d ¬ φ x A if φ B C = if φ x A B x A C
9 4 8 pm2.61i x A if φ B C = if φ x A B x A C