Metamath Proof Explorer


Theorem ifpbi1

Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 14-Apr-2020)

Ref Expression
Assertion ifpbi1 φ ψ if- φ χ θ if- ψ χ θ

Proof

Step Hyp Ref Expression
1 imbi1 φ ψ φ χ ψ χ
2 notbi φ ψ ¬ φ ¬ ψ
3 2 biimpi φ ψ ¬ φ ¬ ψ
4 3 imbi1d φ ψ ¬ φ θ ¬ ψ θ
5 1 4 anbi12d φ ψ φ χ ¬ φ θ ψ χ ¬ ψ θ
6 dfifp2 if- φ χ θ φ χ ¬ φ θ
7 dfifp2 if- ψ χ θ ψ χ ¬ ψ θ
8 5 6 7 3bitr4g φ ψ if- φ χ θ if- ψ χ θ