Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Short Studies
Additional work on conditional logical operator
ifpim1g
Next ⟩
ifp1bi
Metamath Proof Explorer
Ascii
Unicode
Theorem
ifpim1g
Description:
Implication of conditional logical operators.
(Contributed by
RP
, 18-Apr-2020)
Ref
Expression
Assertion
ifpim1g
⊢
if-
φ
χ
θ
→
if-
ψ
χ
θ
↔
ψ
→
φ
∨
θ
→
χ
∧
φ
→
ψ
∨
χ
→
θ
Proof
Step
Hyp
Ref
Expression
1
ifpim123g
⊢
if-
φ
χ
θ
→
if-
ψ
χ
θ
↔
φ
→
¬
ψ
∨
χ
→
χ
∧
ψ
→
φ
∨
θ
→
χ
∧
φ
→
ψ
∨
χ
→
θ
∧
¬
ψ
→
φ
∨
θ
→
θ
2
id
⊢
χ
→
χ
3
2
olci
⊢
φ
→
¬
ψ
∨
χ
→
χ
4
3
biantrur
⊢
ψ
→
φ
∨
θ
→
χ
↔
φ
→
¬
ψ
∨
χ
→
χ
∧
ψ
→
φ
∨
θ
→
χ
5
4
bicomi
⊢
φ
→
¬
ψ
∨
χ
→
χ
∧
ψ
→
φ
∨
θ
→
χ
↔
ψ
→
φ
∨
θ
→
χ
6
id
⊢
θ
→
θ
7
6
olci
⊢
¬
ψ
→
φ
∨
θ
→
θ
8
7
biantru
⊢
φ
→
ψ
∨
χ
→
θ
↔
φ
→
ψ
∨
χ
→
θ
∧
¬
ψ
→
φ
∨
θ
→
θ
9
8
bicomi
⊢
φ
→
ψ
∨
χ
→
θ
∧
¬
ψ
→
φ
∨
θ
→
θ
↔
φ
→
ψ
∨
χ
→
θ
10
5
9
anbi12i
⊢
φ
→
¬
ψ
∨
χ
→
χ
∧
ψ
→
φ
∨
θ
→
χ
∧
φ
→
ψ
∨
χ
→
θ
∧
¬
ψ
→
φ
∨
θ
→
θ
↔
ψ
→
φ
∨
θ
→
χ
∧
φ
→
ψ
∨
χ
→
θ
11
1
10
bitri
⊢
if-
φ
χ
θ
→
if-
ψ
χ
θ
↔
ψ
→
φ
∨
θ
→
χ
∧
φ
→
ψ
∨
χ
→
θ