Metamath Proof Explorer


Theorem ifpim23g

Description: Restate implication as conditional logic operator. (Contributed by RP, 25-Apr-2020)

Ref Expression
Assertion ifpim23g φψif-χψ¬φφψχχφψ

Proof

Step Hyp Ref Expression
1 ifpidg φψif-χψ¬φχψφψχφψψ¬φχφψφψχ¬φ
2 dfor2 φψφψψ
3 2 imbi2i χφψχφψψ
4 impexp χφψψχφψψ
5 ax-1 ψφψ
6 5 adantl χψφψ
7 6 biantrur χφψψχψφψχφψψ
8 3 4 7 3bitr2i χφψχψφψχφψψ
9 impexp φψχφψχ
10 imdi φψχφψφχ
11 imor φχ¬φχ
12 orcom ¬φχχ¬φ
13 11 12 bitri φχχ¬φ
14 13 imbi2i φψφχφψχ¬φ
15 10 14 bitri φψχφψχ¬φ
16 9 15 bitri φψχφψχ¬φ
17 pm2.21 ¬φφψ
18 17 olcd ¬φχφψ
19 18 biantrur φψχ¬φ¬φχφψφψχ¬φ
20 16 19 bitri φψχ¬φχφψφψχ¬φ
21 8 20 anbi12i χφψφψχχψφψχφψψ¬φχφψφψχ¬φ
22 ancom χφψφψχφψχχφψ
23 1 21 22 3bitr2i φψif-χψ¬φφψχχφψ