Metamath Proof Explorer


Theorem ifpxorcor

Description: Corollary of commutation of biconditional. (Contributed by RP, 25-Apr-2020)

Ref Expression
Assertion ifpxorcor if-φ¬ψψif-ψ¬φφ

Proof

Step Hyp Ref Expression
1 ifpbicor if-φ¬ψ¬¬ψif-¬ψφ¬φ
2 notnotb ψ¬¬ψ
3 ifpbi3 ψ¬¬ψif-φ¬ψψif-φ¬ψ¬¬ψ
4 2 3 ax-mp if-φ¬ψψif-φ¬ψ¬¬ψ
5 ifpn if-ψ¬φφif-¬ψφ¬φ
6 1 4 5 3bitr4i if-φ¬ψψif-ψ¬φφ