Metamath Proof Explorer


Theorem igamf

Description: Closure of the inverse Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017)

Ref Expression
Assertion igamf 1Γ:

Proof

Step Hyp Ref Expression
1 df-igam 1Γ=xifx01Γx
2 0cnd xx0
3 eldif xx¬x
4 gamcl xΓx
5 gamne0 xΓx0
6 4 5 reccld x1Γx
7 3 6 sylbir x¬x1Γx
8 2 7 ifclda xifx01Γx
9 1 8 fmpti 1Γ: