Metamath Proof Explorer


Theorem igamz

Description: Value of the inverse Gamma function on nonpositive integers. (Contributed by Mario Carneiro, 16-Jul-2017)

Ref Expression
Assertion igamz A 1 Γ A = 0

Proof

Step Hyp Ref Expression
1 eldifi A A
2 1 zcnd A A
3 igamval A 1 Γ A = if A 0 1 Γ A
4 2 3 syl A 1 Γ A = if A 0 1 Γ A
5 iftrue A if A 0 1 Γ A = 0
6 4 5 eqtrd A 1 Γ A = 0