Metamath Proof Explorer


Theorem imacosupp

Description: The image of the support of the composition of two functions is the support of the outer function. (Contributed by AV, 30-May-2019)

Ref Expression
Assertion imacosupp FVGWFunGFsuppZranGGFGsuppZ=FsuppZ

Proof

Step Hyp Ref Expression
1 suppco FVGWFGsuppZ=G-1FsuppZ
2 1 imaeq2d FVGWGFGsuppZ=GG-1FsuppZ
3 funforn FunGG:domGontoranG
4 foimacnv G:domGontoranGFsuppZranGGG-1FsuppZ=FsuppZ
5 3 4 sylanb FunGFsuppZranGGG-1FsuppZ=FsuppZ
6 2 5 sylan9eq FVGWFunGFsuppZranGGFGsuppZ=FsuppZ
7 6 ex FVGWFunGFsuppZranGGFGsuppZ=FsuppZ