Metamath Proof Explorer


Theorem imaeqsalv

Description: Substitute a function value into a universal quantifier over an image. (Contributed by Scott Fenton, 27-Sep-2024)

Ref Expression
Hypothesis imaeqsex.1 x = F y φ ψ
Assertion imaeqsalv F Fn A B A x F B φ y B ψ

Proof

Step Hyp Ref Expression
1 imaeqsex.1 x = F y φ ψ
2 1 notbid x = F y ¬ φ ¬ ψ
3 2 imaeqsexv F Fn A B A x F B ¬ φ y B ¬ ψ
4 3 notbid F Fn A B A ¬ x F B ¬ φ ¬ y B ¬ ψ
5 dfral2 x F B φ ¬ x F B ¬ φ
6 dfral2 y B ψ ¬ y B ¬ ψ
7 4 5 6 3bitr4g F Fn A B A x F B φ y B ψ