Metamath Proof Explorer


Theorem imaiinfv

Description: Indexed intersection of an image. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Assertion imaiinfv FFnABAxBFx=FB

Proof

Step Hyp Ref Expression
1 fnssres FFnABAFBFnB
2 fniinfv FBFnBxBFBx=ranFB
3 1 2 syl FFnABAxBFBx=ranFB
4 fvres xBFBx=Fx
5 4 iineq2i xBFBx=xBFx
6 5 eqcomi xBFx=xBFBx
7 df-ima FB=ranFB
8 7 inteqi FB=ranFB
9 3 6 8 3eqtr4g FFnABAxBFx=FB