Metamath Proof Explorer


Theorem imaopab

Description: The image of a class of ordered pairs. (Contributed by Steven Nguyen, 6-Jun-2023)

Ref Expression
Assertion imaopab xy|φA=y|xAφ

Proof

Step Hyp Ref Expression
1 df-ima xy|φA=ranxy|φA
2 resopab xy|φA=xy|xAφ
3 2 rneqi ranxy|φA=ranxy|xAφ
4 rnopab ranxy|xAφ=y|xxAφ
5 df-rex xAφxxAφ
6 5 abbii y|xAφ=y|xxAφ
7 4 6 eqtr4i ranxy|xAφ=y|xAφ
8 1 3 7 3eqtri xy|φA=y|xAφ