Metamath Proof Explorer


Theorem imasrngf1

Description: The image of a non-unital ring under an injection is a non-unital ring ( imasmndf1 analog). (Contributed by AV, 22-Feb-2025)

Ref Expression
Hypotheses imasrngf1.u U=F𝑠R
imasrngf1.v V=BaseR
Assertion imasrngf1 F:V1-1BRRngURng

Proof

Step Hyp Ref Expression
1 imasrngf1.u U=F𝑠R
2 imasrngf1.v V=BaseR
3 1 a1i F:V1-1BRRngU=F𝑠R
4 2 a1i F:V1-1BRRngV=BaseR
5 eqid +R=+R
6 eqid R=R
7 f1f1orn F:V1-1BF:V1-1 ontoranF
8 7 adantr F:V1-1BRRngF:V1-1 ontoranF
9 f1ofo F:V1-1 ontoranFF:VontoranF
10 8 9 syl F:V1-1BRRngF:VontoranF
11 8 f1ocpbl F:V1-1BRRngaVbVpVqVFa=FpFb=FqFa+Rb=Fp+Rq
12 8 f1ocpbl F:V1-1BRRngaVbVpVqVFa=FpFb=FqFaRb=FpRq
13 simpr F:V1-1BRRngRRng
14 3 4 5 6 10 11 12 13 imasrng F:V1-1BRRngURng