Metamath Proof Explorer


Theorem imasubc2

Description: An image of a full functor is a (full) subcategory. Remark 4.2(3) of Adamek p. 48. (Contributed by Zhi Wang, 7-Nov-2025)

Ref Expression
Hypotheses imasubc.s S = F A
imasubc.h H = Hom D
imasubc.k K = x S , y S p F -1 x × F -1 y G p H p
imasubc.f φ F D Full E G
Assertion imasubc2 φ K Subcat E

Proof

Step Hyp Ref Expression
1 imasubc.s S = F A
2 imasubc.h H = Hom D
3 imasubc.k K = x S , y S p F -1 x × F -1 y G p H p
4 imasubc.f φ F D Full E G
5 eqid Base E = Base E
6 eqid Hom 𝑓 E = Hom 𝑓 E
7 1 2 3 4 5 6 imasubc φ K Fn S × S S Base E Hom 𝑓 E S × S = K
8 7 simp3d φ Hom 𝑓 E S × S = K
9 fullfunc D Full E D Func E
10 9 ssbri F D Full E G F D Func E G
11 4 10 syl φ F D Func E G
12 11 funcrcl3 φ E Cat
13 7 simp2d φ S Base E
14 5 6 12 13 fullsubc φ Hom 𝑓 E S × S Subcat E
15 8 14 eqeltrrd φ K Subcat E