Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Categories
Full & faithful functors
imasubclem1
Next ⟩
imasubclem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
imasubclem1
Description:
Lemma for
imasubc
.
(Contributed by
Zhi Wang
, 6-Nov-2025)
Ref
Expression
Hypotheses
imasubclem1.f
⊢
φ
→
F
∈
V
imasubclem1.g
⊢
φ
→
G
∈
W
Assertion
imasubclem1
⊢
φ
→
⋃
x
∈
F
-1
A
×
G
-1
B
H
⁡
C
D
∈
V
Proof
Step
Hyp
Ref
Expression
1
imasubclem1.f
⊢
φ
→
F
∈
V
2
imasubclem1.g
⊢
φ
→
G
∈
W
3
cnvexg
⊢
F
∈
V
→
F
-1
∈
V
4
1
3
syl
⊢
φ
→
F
-1
∈
V
5
4
imaexd
⊢
φ
→
F
-1
A
∈
V
6
cnvexg
⊢
G
∈
W
→
G
-1
∈
V
7
2
6
syl
⊢
φ
→
G
-1
∈
V
8
7
imaexd
⊢
φ
→
G
-1
B
∈
V
9
5
8
xpexd
⊢
φ
→
F
-1
A
×
G
-1
B
∈
V
10
fvex
⊢
H
⁡
C
∈
V
11
10
imaex
⊢
H
⁡
C
D
∈
V
12
11
rgenw
⊢
∀
x
∈
F
-1
A
×
G
-1
B
H
⁡
C
D
∈
V
13
iunexg
⊢
F
-1
A
×
G
-1
B
∈
V
∧
∀
x
∈
F
-1
A
×
G
-1
B
H
⁡
C
D
∈
V
→
⋃
x
∈
F
-1
A
×
G
-1
B
H
⁡
C
D
∈
V
14
9
12
13
sylancl
⊢
φ
→
⋃
x
∈
F
-1
A
×
G
-1
B
H
⁡
C
D
∈
V