Metamath Proof Explorer


Theorem imdistand

Description: Distribution of implication with conjunction (deduction form). (Contributed by NM, 27-Aug-2004)

Ref Expression
Hypothesis imdistand.1 φψχθ
Assertion imdistand φψχψθ

Proof

Step Hyp Ref Expression
1 imdistand.1 φψχθ
2 imdistan ψχθψχψθ
3 1 2 sylib φψχψθ