Metamath Proof Explorer


Theorem impsingle-imim1

Description: Derivation of impsingle-imim1 ( imim1 ) from ax-mp and impsingle . It is step 29 in Lukasiewicz. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion impsingle-imim1 φψψχφχ

Proof

Step Hyp Ref Expression
1 impsingle-step21 φχψψψχφχ
2 impsingle-step25 φψφχψψ
3 impsingle-step25 φψφχψψφψψχφχφχψψφχψψ
4 2 3 ax-mp φψψχφχφχψψφχψψ
5 impsingle-step21 φψψχφχφχψψφχψψφχψψψχφχφψψχφχ
6 4 5 ax-mp φχψψψχφχφψψχφχ
7 1 6 ax-mp φψψχφχ