Metamath Proof Explorer


Theorem impsingle-step22

Description: Derivation of impsingle-step22 from ax-mp and impsingle . It is used as a lemma in proofs of imim1 and peirce from impsingle . It is Step 22 in Lukasiewicz, where it appears as 'Cpp' using parenthesis-free prefix notation. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion impsingle-step22 φ φ

Proof

Step Hyp Ref Expression
1 impsingle-step4 θ μ θ λ θ
2 impsingle-step4 φ ψ φ φ φ
3 impsingle-step4 φ φ φ φ ψ φ
4 impsingle φ φ φ φ ψ φ φ ψ φ φ φ θ μ θ λ θ φ φ
5 3 4 ax-mp φ ψ φ φ φ θ μ θ λ θ φ φ
6 2 5 ax-mp θ μ θ λ θ φ φ
7 1 6 ax-mp φ φ