Metamath Proof Explorer


Theorem imsqrtval

Description: Imaginary part of the complex square root. (Contributed by RP, 18-May-2024)

Ref Expression
Assertion imsqrtval A A = if A < 0 1 1 A A 2

Proof

Step Hyp Ref Expression
1 sqrtcval A A = A + A 2 + i if A < 0 1 1 A A 2
2 1 fveq2d A A = A + A 2 + i if A < 0 1 1 A A 2
3 sqrtcvallem5 A A + A 2
4 neg1rr 1
5 1re 1
6 4 5 ifcli if A < 0 1 1
7 6 a1i A if A < 0 1 1
8 sqrtcvallem3 A A A 2
9 7 8 remulcld A if A < 0 1 1 A A 2
10 3 9 crimd A A + A 2 + i if A < 0 1 1 A A 2 = if A < 0 1 1 A A 2
11 2 10 eqtrd A A = if A < 0 1 1 A A 2