Database
ELEMENTARY GEOMETRY
Tarskian Geometry
Angle Comparisons
inagflat
Next ⟩
inagswap
Metamath Proof Explorer
Ascii
Unicode
Theorem
inagflat
Description:
Any point lies in a flat angle.
(Contributed by
Thierry Arnoux
, 13-Feb-2023)
Ref
Expression
Hypotheses
isinag.p
⊢
P
=
Base
G
isinag.i
⊢
I
=
Itv
⁡
G
isinag.k
⊢
K
=
hl
𝒢
⁡
G
isinag.x
⊢
φ
→
X
∈
P
isinag.a
⊢
φ
→
A
∈
P
isinag.b
⊢
φ
→
B
∈
P
isinag.c
⊢
φ
→
C
∈
P
inagflat.g
⊢
φ
→
G
∈
𝒢
Tarski
inagflat.x
⊢
φ
→
X
∈
P
inagflat.1
⊢
φ
→
A
≠
B
inagflat.2
⊢
φ
→
C
≠
B
inagflat.3
⊢
φ
→
X
≠
B
inagflat.4
⊢
φ
→
B
∈
A
I
C
Assertion
inagflat
⊢
φ
→
X
∈
𝒢
∠
⁡
G
〈“
A
B
C
”〉
Proof
Step
Hyp
Ref
Expression
1
isinag.p
⊢
P
=
Base
G
2
isinag.i
⊢
I
=
Itv
⁡
G
3
isinag.k
⊢
K
=
hl
𝒢
⁡
G
4
isinag.x
⊢
φ
→
X
∈
P
5
isinag.a
⊢
φ
→
A
∈
P
6
isinag.b
⊢
φ
→
B
∈
P
7
isinag.c
⊢
φ
→
C
∈
P
8
inagflat.g
⊢
φ
→
G
∈
𝒢
Tarski
9
inagflat.x
⊢
φ
→
X
∈
P
10
inagflat.1
⊢
φ
→
A
≠
B
11
inagflat.2
⊢
φ
→
C
≠
B
12
inagflat.3
⊢
φ
→
X
≠
B
13
inagflat.4
⊢
φ
→
B
∈
A
I
C
14
eqidd
⊢
φ
→
B
=
B
15
14
orcd
⊢
φ
→
B
=
B
∨
B
K
⁡
B
X
16
1
2
3
4
5
6
7
8
6
10
11
12
13
15
isinagd
⊢
φ
→
X
∈
𝒢
∠
⁡
G
〈“
A
B
C
”〉