Metamath Proof Explorer


Theorem inagne1

Description: Deduce inequality from the in-angle relation. (Contributed by Thierry Arnoux, 29-Oct-2021)

Ref Expression
Hypotheses isinag.p P=BaseG
isinag.i I=ItvG
isinag.k K=hl𝒢G
isinag.x φXP
isinag.a φAP
isinag.b φBP
isinag.c φCP
inagflat.g φG𝒢Tarski
inagswap.1 φX𝒢G⟨“ABC”⟩
Assertion inagne1 φAB

Proof

Step Hyp Ref Expression
1 isinag.p P=BaseG
2 isinag.i I=ItvG
3 isinag.k K=hl𝒢G
4 isinag.x φXP
5 isinag.a φAP
6 isinag.b φBP
7 isinag.c φCP
8 inagflat.g φG𝒢Tarski
9 inagswap.1 φX𝒢G⟨“ABC”⟩
10 1 2 3 4 5 6 7 8 isinag φX𝒢G⟨“ABC”⟩ABCBXBxPxAICx=BxKBX
11 9 10 mpbid φABCBXBxPxAICx=BxKBX
12 11 simpld φABCBXB
13 12 simp1d φAB