Metamath Proof Explorer


Theorem indcthing

Description: An indiscrete category, i.e., a category where all hom-sets have exactly one morphism, is thin. (Contributed by Zhi Wang, 11-Nov-2025)

Ref Expression
Hypotheses indcthing.b φ B = Base C
indcthing.h φ H = Hom C
indcthing.c φ C Cat
indcthing.i φ x B y B x H y = F
Assertion indcthing φ C ThinCat

Proof

Step Hyp Ref Expression
1 indcthing.b φ B = Base C
2 indcthing.h φ H = Hom C
3 indcthing.c φ C Cat
4 indcthing.i φ x B y B x H y = F
5 eqid F = F
6 mosn F = F * f f F
7 5 6 ax-mp * f f F
8 4 eleq2d φ x B y B f x H y f F
9 8 mobidv φ x B y B * f f x H y * f f F
10 7 9 mpbiri φ x B y B * f f x H y
11 1 2 10 3 isthincd φ C ThinCat