Metamath Proof Explorer


Theorem indistpsALTOLD

Description: Obsolete version of indistpsALT as of 31-Oct-2024. The indiscrete topology on a set A expressed as a topological space. Here we show how to derive the structural version indistps from the direct component assignment version indistps2 . (Contributed by NM, 24-Oct-2012) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses indistpsALT.a AV
indistpsALT.k K=BasendxATopSetndxA
Assertion indistpsALTOLD KTopSp

Proof

Step Hyp Ref Expression
1 indistpsALT.a AV
2 indistpsALT.k K=BasendxATopSetndxA
3 indistopon AVATopOnA
4 df-tset TopSet=Slot9
5 1lt9 1<9
6 9nn 9
7 2 4 5 6 2strbas AVA=BaseK
8 1 7 ax-mp A=BaseK
9 prex AV
10 2 4 5 6 2strop AVA=TopSetK
11 9 10 ax-mp A=TopSetK
12 8 11 tsettps ATopOnAKTopSp
13 1 3 12 mp2b KTopSp