Metamath Proof Explorer


Theorem ine0

Description: The imaginary unit _i is not zero. (Contributed by NM, 6-May-1999)

Ref Expression
Assertion ine0 i0

Proof

Step Hyp Ref Expression
1 ax-1ne0 10
2 1 neii ¬1=0
3 oveq2 i=0ii=i0
4 ax-icn i
5 4 mul01i i0=0
6 3 5 eqtr2di i=00=ii
7 6 oveq1d i=00+1=ii+1
8 ax-1cn 1
9 8 addlidi 0+1=1
10 ax-i2m1 ii+1=0
11 7 9 10 3eqtr3g i=01=0
12 2 11 mto ¬i=0
13 12 neir i0