Metamath Proof Explorer


Theorem infeq123d

Description: Equality deduction for infimum. (Contributed by AV, 2-Sep-2020)

Ref Expression
Hypotheses infeq123d.a φ A = D
infeq123d.b φ B = E
infeq123d.c φ C = F
Assertion infeq123d φ sup A B C = sup D E F

Proof

Step Hyp Ref Expression
1 infeq123d.a φ A = D
2 infeq123d.b φ B = E
3 infeq123d.c φ C = F
4 3 cnveqd φ C -1 = F -1
5 1 2 4 supeq123d φ sup A B C -1 = sup D E F -1
6 df-inf sup A B C = sup A B C -1
7 df-inf sup D E F = sup D E F -1
8 5 6 7 3eqtr4g φ sup A B C = sup D E F