Metamath Proof Explorer


Theorem infm3lem

Description: Lemma for infm3 . (Contributed by NM, 14-Jun-2005)

Ref Expression
Assertion infm3lem xyx=y

Proof

Step Hyp Ref Expression
1 renegcl xx
2 recn xx
3 2 negnegd xx=x
4 3 eqcomd xx=x
5 negeq y=xy=x
6 5 rspceeqv xx=xyx=y
7 1 4 6 syl2anc xyx=y