Metamath Proof Explorer


Theorem infsubc

Description: The intersection of two subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025)

Ref Expression
Assertion infsubc A Subcat C B Subcat C x dom A dom B A x B x Subcat C

Proof

Step Hyp Ref Expression
1 prnzg A Subcat C A B
2 1 adantr A Subcat C B Subcat C A B
3 simpll A Subcat C B Subcat C y A B A Subcat C
4 eleq1 y = A y Subcat C A Subcat C
5 3 4 syl5ibrcom A Subcat C B Subcat C y A B y = A y Subcat C
6 simplr A Subcat C B Subcat C y A B B Subcat C
7 eleq1 y = B y Subcat C B Subcat C
8 6 7 syl5ibrcom A Subcat C B Subcat C y A B y = B y Subcat C
9 elpri y A B y = A y = B
10 9 adantl A Subcat C B Subcat C y A B y = A y = B
11 5 8 10 mpjaod A Subcat C B Subcat C y A B y Subcat C
12 iinfprg A Subcat C B Subcat C x dom A dom B A x B x = x y A B dom y y A B y x
13 2 11 12 iinfsubc A Subcat C B Subcat C x dom A dom B A x B x Subcat C