Metamath Proof Explorer


Theorem infxrglb

Description: The infimum of a set of extended reals is less than an extended real if and only if the set contains a smaller number. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Assertion infxrglb A*B*supA*<<BxAx<B

Proof

Step Hyp Ref Expression
1 xrltso <Or*
2 1 a1i A*<Or*
3 xrinfmss A*z*yA¬y<zy*z<yxAx<y
4 id A*A*
5 2 3 4 infglbb A*B*supA*<<BxAx<B