Metamath Proof Explorer


Theorem infxrlbrnmpt2

Description: A member of a nonempty indexed set of reals is greater than or equal to the set's lower bound. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses infxrlbrnmpt2.x xφ
infxrlbrnmpt2.b φxAB*
infxrlbrnmpt2.c φCA
infxrlbrnmpt2.d φD*
infxrlbrnmpt2.e x=CB=D
Assertion infxrlbrnmpt2 φsupranxAB*<D

Proof

Step Hyp Ref Expression
1 infxrlbrnmpt2.x xφ
2 infxrlbrnmpt2.b φxAB*
3 infxrlbrnmpt2.c φCA
4 infxrlbrnmpt2.d φD*
5 infxrlbrnmpt2.e x=CB=D
6 eqid xAB=xAB
7 1 6 2 rnmptssd φranxAB*
8 6 5 elrnmpt1s CAD*DranxAB
9 3 4 8 syl2anc φDranxAB
10 infxrlb ranxAB*DranxABsupranxAB*<D
11 7 9 10 syl2anc φsupranxAB*<D