Metamath Proof Explorer


Theorem infxrlbrnmpt2

Description: A member of a nonempty indexed set of reals is greater than or equal to the set's lower bound. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses infxrlbrnmpt2.x x φ
infxrlbrnmpt2.b φ x A B *
infxrlbrnmpt2.c φ C A
infxrlbrnmpt2.d φ D *
infxrlbrnmpt2.e x = C B = D
Assertion infxrlbrnmpt2 φ sup ran x A B * < D

Proof

Step Hyp Ref Expression
1 infxrlbrnmpt2.x x φ
2 infxrlbrnmpt2.b φ x A B *
3 infxrlbrnmpt2.c φ C A
4 infxrlbrnmpt2.d φ D *
5 infxrlbrnmpt2.e x = C B = D
6 eqid x A B = x A B
7 1 6 2 rnmptssd φ ran x A B *
8 6 5 elrnmpt1s C A D * D ran x A B
9 3 4 8 syl2anc φ D ran x A B
10 infxrlb ran x A B * D ran x A B sup ran x A B * < D
11 7 9 10 syl2anc φ sup ran x A B * < D