Metamath Proof Explorer


Theorem initocmd

Description: Initial objects are the object part of colimits of the empty diagram. (Contributed by Zhi Wang, 17-Nov-2025)

Ref Expression
Assertion initocmd Could not format assertion : No typesetting found for |- ( InitO ` C ) = dom ( (/) ( C Colimit (/) ) (/) ) with typecode |-

Proof

Step Hyp Ref Expression
1 initorcl x InitO C C Cat
2 uobrcl Could not format ( x e. dom ( ( C DiagFunc (/) ) ( C UP ( (/) FuncCat C ) ) <. (/) , (/) >. ) -> ( C e. Cat /\ ( (/) FuncCat C ) e. Cat ) ) : No typesetting found for |- ( x e. dom ( ( C DiagFunc (/) ) ( C UP ( (/) FuncCat C ) ) <. (/) , (/) >. ) -> ( C e. Cat /\ ( (/) FuncCat C ) e. Cat ) ) with typecode |-
3 2 simpld Could not format ( x e. dom ( ( C DiagFunc (/) ) ( C UP ( (/) FuncCat C ) ) <. (/) , (/) >. ) -> C e. Cat ) : No typesetting found for |- ( x e. dom ( ( C DiagFunc (/) ) ( C UP ( (/) FuncCat C ) ) <. (/) , (/) >. ) -> C e. Cat ) with typecode |-
4 0ex V
5 4 a1i C Cat V
6 base0 = Base
7 6 a1i C Cat = Base
8 id C Cat C Cat
9 eqid FuncCat C = FuncCat C
10 5 7 8 9 0fucterm Could not format ( C e. Cat -> ( (/) FuncCat C ) e. TermCat ) : No typesetting found for |- ( C e. Cat -> ( (/) FuncCat C ) e. TermCat ) with typecode |-
11 opex V
12 11 snid
13 9 fucbas Func C = Base FuncCat C
14 8 0func C Cat Func C =
15 13 14 eqtr3id C Cat Base FuncCat C =
16 12 15 eleqtrrid C Cat Base FuncCat C
17 eqid C Δ func = C Δ func
18 0cat Cat
19 18 a1i C Cat Cat
20 17 8 19 9 diagcl C Cat C Δ func C Func FuncCat C
21 10 16 20 isinito4 Could not format ( C e. Cat -> ( x e. ( InitO ` C ) <-> x e. dom ( ( C DiagFunc (/) ) ( C UP ( (/) FuncCat C ) ) <. (/) , (/) >. ) ) ) : No typesetting found for |- ( C e. Cat -> ( x e. ( InitO ` C ) <-> x e. dom ( ( C DiagFunc (/) ) ( C UP ( (/) FuncCat C ) ) <. (/) , (/) >. ) ) ) with typecode |-
22 1 3 21 pm5.21nii Could not format ( x e. ( InitO ` C ) <-> x e. dom ( ( C DiagFunc (/) ) ( C UP ( (/) FuncCat C ) ) <. (/) , (/) >. ) ) : No typesetting found for |- ( x e. ( InitO ` C ) <-> x e. dom ( ( C DiagFunc (/) ) ( C UP ( (/) FuncCat C ) ) <. (/) , (/) >. ) ) with typecode |-
23 22 eqriv Could not format ( InitO ` C ) = dom ( ( C DiagFunc (/) ) ( C UP ( (/) FuncCat C ) ) <. (/) , (/) >. ) : No typesetting found for |- ( InitO ` C ) = dom ( ( C DiagFunc (/) ) ( C UP ( (/) FuncCat C ) ) <. (/) , (/) >. ) with typecode |-
24 df-ov Could not format ( (/) ( C Colimit (/) ) (/) ) = ( ( C Colimit (/) ) ` <. (/) , (/) >. ) : No typesetting found for |- ( (/) ( C Colimit (/) ) (/) ) = ( ( C Colimit (/) ) ` <. (/) , (/) >. ) with typecode |-
25 cmdfval2 Could not format ( ( C Colimit (/) ) ` <. (/) , (/) >. ) = ( ( C DiagFunc (/) ) ( C UP ( (/) FuncCat C ) ) <. (/) , (/) >. ) : No typesetting found for |- ( ( C Colimit (/) ) ` <. (/) , (/) >. ) = ( ( C DiagFunc (/) ) ( C UP ( (/) FuncCat C ) ) <. (/) , (/) >. ) with typecode |-
26 24 25 eqtri Could not format ( (/) ( C Colimit (/) ) (/) ) = ( ( C DiagFunc (/) ) ( C UP ( (/) FuncCat C ) ) <. (/) , (/) >. ) : No typesetting found for |- ( (/) ( C Colimit (/) ) (/) ) = ( ( C DiagFunc (/) ) ( C UP ( (/) FuncCat C ) ) <. (/) , (/) >. ) with typecode |-
27 26 dmeqi Could not format dom ( (/) ( C Colimit (/) ) (/) ) = dom ( ( C DiagFunc (/) ) ( C UP ( (/) FuncCat C ) ) <. (/) , (/) >. ) : No typesetting found for |- dom ( (/) ( C Colimit (/) ) (/) ) = dom ( ( C DiagFunc (/) ) ( C UP ( (/) FuncCat C ) ) <. (/) , (/) >. ) with typecode |-
28 23 27 eqtr4i Could not format ( InitO ` C ) = dom ( (/) ( C Colimit (/) ) (/) ) : No typesetting found for |- ( InitO ` C ) = dom ( (/) ( C Colimit (/) ) (/) ) with typecode |-