Metamath Proof Explorer


Theorem inlinecirc02preu

Description: Intersection of a line with a circle: A line passing through a point within a circle around the origin intersects the circle at exactly two different points, expressed with restricted uniqueness (and without the definition of proper pairs). (Contributed by AV, 16-May-2023)

Ref Expression
Hypotheses inlinecirc02p.i I=12
inlinecirc02p.e E=msup
inlinecirc02p.p P=I
inlinecirc02p.s S=SphereE
inlinecirc02p.0 0˙=I×0
inlinecirc02p.l L=LineME
inlinecirc02p.d D=distE
Assertion inlinecirc02preu XPYPXYR+XD0˙<R∃!p𝒫Pp=2p=0˙SRXLY

Proof

Step Hyp Ref Expression
1 inlinecirc02p.i I=12
2 inlinecirc02p.e E=msup
3 inlinecirc02p.p P=I
4 inlinecirc02p.s S=SphereE
5 inlinecirc02p.0 0˙=I×0
6 inlinecirc02p.l L=LineME
7 inlinecirc02p.d D=distE
8 1 2 3 4 5 6 7 inlinecirc02p XPYPXYR+XD0˙<R0˙SRXLYPrPairsP
9 reueq 0˙SRXLYPrPairsP∃!pPrPairsPp=0˙SRXLY
10 8 9 sylib XPYPXYR+XD0˙<R∃!pPrPairsPp=0˙SRXLY
11 3 ovexi PV
12 prprreueq PV∃!pPrPairsPp=0˙SRXLY∃!p𝒫Pp=2p=0˙SRXLY
13 11 12 mp1i XPYPXYR+XD0˙<R∃!pPrPairsPp=0˙SRXLY∃!p𝒫Pp=2p=0˙SRXLY
14 10 13 mpbid XPYPXYR+XD0˙<R∃!p𝒫Pp=2p=0˙SRXLY