Metamath Proof Explorer


Theorem int-addassocd

Description: AdditionAssociativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-addassocd.1 φA
int-addassocd.2 φC
int-addassocd.3 φD
int-addassocd.4 φA=B
Assertion int-addassocd φB+C+D=A+C+D

Proof

Step Hyp Ref Expression
1 int-addassocd.1 φA
2 int-addassocd.2 φC
3 int-addassocd.3 φD
4 int-addassocd.4 φA=B
5 1 recnd φA
6 2 recnd φC
7 3 recnd φD
8 5 6 7 addassd φA+C+D=A+C+D
9 4 oveq1d φA+C+D=B+C+D
10 8 9 eqtr2d φB+C+D=A+C+D