Metamath Proof Explorer


Theorem int-mulcomd

Description: MultiplicationCommutativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-mulcomd.1 φ B
int-mulcomd.2 φ C
int-mulcomd.3 φ A = B
Assertion int-mulcomd φ B C = C A

Proof

Step Hyp Ref Expression
1 int-mulcomd.1 φ B
2 int-mulcomd.2 φ C
3 int-mulcomd.3 φ A = B
4 1 recnd φ B
5 2 recnd φ C
6 4 5 mulcomd φ B C = C B
7 3 eqcomd φ B = A
8 7 oveq2d φ C B = C A
9 6 8 eqtrd φ B C = C A