Metamath Proof Explorer


Theorem int-mulcomd

Description: MultiplicationCommutativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-mulcomd.1 φB
int-mulcomd.2 φC
int-mulcomd.3 φA=B
Assertion int-mulcomd φBC=CA

Proof

Step Hyp Ref Expression
1 int-mulcomd.1 φB
2 int-mulcomd.2 φC
3 int-mulcomd.3 φA=B
4 1 recnd φB
5 2 recnd φC
6 4 5 mulcomd φBC=CB
7 3 eqcomd φB=A
8 7 oveq2d φCB=CA
9 6 8 eqtrd φBC=CA